The number of *positive* values \(x\) which satisfy the equation \[x=8^{\log_2x} -9^{\log_3x}-4^{\log_2x}+\log_{0.5}{0.25}\] is

0;

1;

2;

3.

Review question
# How many roots are there to $x=8^{\log_2x} -9^{\log_3x}-4^{\log_2x}+\log_{0.5}{0.25}$?

Ref: R5103

The number of *positive* values \(x\) which satisfy the equation \[x=8^{\log_2x} -9^{\log_3x}-4^{\log_2x}+\log_{0.5}{0.25}\] is

0;

1;

2;

3.